Approximate invariance for ergodic actions of amenable groups
Discrete analysis (2019) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We develop in this paper some general techniques to analyze action sets of small doubling for probability measure-preserving actions of amenable groups. As an application of these techniques, we prove a dynamical generalization of Kneser's celebrated density theorem for subsets in $(\bZ,+)$, valid for any countable amenable group, and we show how it can be used to establish a plethora of new inverse product set theorems for upper and lower asymptotic densities. We provide several examples demonstrating that our results are optimal for the settings under study.
Publié le :
@article{DAS_2019_a14,
     author = {Michael Bj\"orklund and Alexander Fish},
     title = {Approximate invariance for ergodic actions of amenable groups},
     journal = {Discrete analysis},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2019_a14/}
}
TY  - JOUR
AU  - Michael Björklund
AU  - Alexander Fish
TI  - Approximate invariance for ergodic actions of amenable groups
JO  - Discrete analysis
PY  - 2019
UR  - http://geodesic.mathdoc.fr/item/DAS_2019_a14/
LA  - en
ID  - DAS_2019_a14
ER  - 
%0 Journal Article
%A Michael Björklund
%A Alexander Fish
%T Approximate invariance for ergodic actions of amenable groups
%J Discrete analysis
%D 2019
%U http://geodesic.mathdoc.fr/item/DAS_2019_a14/
%G en
%F DAS_2019_a14
Michael Björklund; Alexander Fish. Approximate invariance for ergodic actions of amenable groups. Discrete analysis (2019). http://geodesic.mathdoc.fr/item/DAS_2019_a14/