A short proof of a conjecture of Erdös proved by Moreira, Richter and Robertson
Discrete analysis (2019) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We give a short proof of a sumset conjecture of Erdös, recently proved by Moreira, Richter and Robertson: every subset of the integers of positive density contains the sum of two infinite sets. The proof is written in the framework of classical ergodic theory.
Publié le :
@article{DAS_2019_a1,
     author = {Bernard Host},
     title = {A short proof of a conjecture of {Erd\"os} proved by {Moreira,} {Richter} and {Robertson}},
     journal = {Discrete analysis},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2019_a1/}
}
TY  - JOUR
AU  - Bernard Host
TI  - A short proof of a conjecture of Erdös proved by Moreira, Richter and Robertson
JO  - Discrete analysis
PY  - 2019
UR  - http://geodesic.mathdoc.fr/item/DAS_2019_a1/
LA  - en
ID  - DAS_2019_a1
ER  - 
%0 Journal Article
%A Bernard Host
%T A short proof of a conjecture of Erdös proved by Moreira, Richter and Robertson
%J Discrete analysis
%D 2019
%U http://geodesic.mathdoc.fr/item/DAS_2019_a1/
%G en
%F DAS_2019_a1
Bernard Host. A short proof of a conjecture of Erdös proved by Moreira, Richter and Robertson. Discrete analysis (2019). http://geodesic.mathdoc.fr/item/DAS_2019_a1/