Proof of a Conjecture of Kleinberg-Sawin-Speyer
Discrete analysis (2018) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

In Ellenberg and Gijswijt's groundbreaking work, the authors show that a subset of $\mathbb{Z}_3^{n}$ with no arithmetic progression of length 3 must be of size at most $2.755^n$ (no prior upper bound was known of $(3-ε)^n)$), and provide for any prime $p$ a value $λ_p$ such that any subset of $\mathbb{Z}_p^{n}$ with no arithmetic progression of length 3 must be of size at most $λ_p^n$. Blasiak et al showed that the same bounds apply to tri-coloured sum-free sets, which are triples $\{(a_i,b_i,c_i):a_i,b_i,c_i\in\mathbb{Z}_p^{n}\}$ with $a_i+b_j+c_k=0$ if and only if $i=j=k$. Building on this work, Kleinberg, Sawin and Speyer gave a description of a value $μ_p$ such that no tri-coloured sum-free sets of size $e^{μ_p n}$ exist in $\mathbb{Z}_p^{n}$, but for any $ε>0$, such sets of size $e^{(μ_p-ε) n}$ exist for all sufficiently large $n$. The value of $μ_p$ was left open, but a conjecture was stated which would imply that $e^{μ_p}=λ_p$, i.e. the Ellenberg-Gijswijt bound is correct for the sum-free set problem. The purpose of this note is to close that gap. The conjecture of Kleinberg, Sawin and Speyer is true, and the Ellenberg-Gijswijt bound is the correct exponent for the sum-free set problem.
Publié le :
@article{DAS_2018_a8,
     author = {Luke Pebody},
     title = {Proof of a {Conjecture} of {Kleinberg-Sawin-Speyer}},
     journal = {Discrete analysis},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2018_a8/}
}
TY  - JOUR
AU  - Luke Pebody
TI  - Proof of a Conjecture of Kleinberg-Sawin-Speyer
JO  - Discrete analysis
PY  - 2018
UR  - http://geodesic.mathdoc.fr/item/DAS_2018_a8/
LA  - en
ID  - DAS_2018_a8
ER  - 
%0 Journal Article
%A Luke Pebody
%T Proof of a Conjecture of Kleinberg-Sawin-Speyer
%J Discrete analysis
%D 2018
%U http://geodesic.mathdoc.fr/item/DAS_2018_a8/
%G en
%F DAS_2018_a8
Luke Pebody. Proof of a Conjecture of Kleinberg-Sawin-Speyer. Discrete analysis (2018). http://geodesic.mathdoc.fr/item/DAS_2018_a8/