The Growth Rate of Tri-Colored Sum-Free Sets
Discrete analysis (2018) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

Let $G$ be an abelian group. A tri-colored sum-free set in $G^n$ is a collection of triples $({\bf a}_i, {\bf b}_i, {\bf c}_i)$ in $G^n$ such that ${\bf a}_i+{\bf b}_j+{\bf c}_k=0$ if and only if $i=j=k$. Fix a prime $q$ and let $C_q$ be the cyclic group of order $q$. Let $θ= \min_{ρ>0} (1+ρ+\cdots + ρ^{q-1}) ρ^{-(q-1)/3}$. Blasiak, Church, Cohn, Grochow, Naslund, Sawin, and Umans (building on previous work of Croot, Lev and Pach, and of Ellenberg and Gijswijt) showed that a tri-colored sum-free set in $C_q^n$ has size at most $3 θ^n$. Between this paper and a paper of Pebody, we will show that, for any $δ> 0$, and $n$ sufficiently large, there are tri-colored sum-free sets in $C_q^n$ of size $(θ-δ)^n$. Our construction also works when $q$ is not prime.
Publié le :
@article{DAS_2018_a7,
     author = {Robert Kleinberg and Will Sawin and David E. Speyer},
     title = {The {Growth} {Rate} of {Tri-Colored} {Sum-Free} {Sets}},
     journal = {Discrete analysis},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2018_a7/}
}
TY  - JOUR
AU  - Robert Kleinberg
AU  - Will Sawin
AU  - David E. Speyer
TI  - The Growth Rate of Tri-Colored Sum-Free Sets
JO  - Discrete analysis
PY  - 2018
UR  - http://geodesic.mathdoc.fr/item/DAS_2018_a7/
LA  - en
ID  - DAS_2018_a7
ER  - 
%0 Journal Article
%A Robert Kleinberg
%A Will Sawin
%A David E. Speyer
%T The Growth Rate of Tri-Colored Sum-Free Sets
%J Discrete analysis
%D 2018
%U http://geodesic.mathdoc.fr/item/DAS_2018_a7/
%G en
%F DAS_2018_a7
Robert Kleinberg; Will Sawin; David E. Speyer. The Growth Rate of Tri-Colored Sum-Free Sets. Discrete analysis (2018). http://geodesic.mathdoc.fr/item/DAS_2018_a7/