Counting rational points on quadric surfaces
Discrete analysis (2018)
Cet article a éte moissonné depuis la source Scholastica
We give an upper bound for the number of rational points of height at most $B$, lying on a surface defined by a quadratic form $Q$. The bound shows an explicit dependence on $Q$. It is optimal with respect to $B$, and is also optimal for typical forms $Q$.
@article{DAS_2018_a6,
author = {T. D. Browning and D. R. Heath-Brown},
title = {Counting rational points on quadric surfaces},
journal = {Discrete analysis},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DAS_2018_a6/}
}
T. D. Browning; D. R. Heath-Brown. Counting rational points on quadric surfaces. Discrete analysis (2018). http://geodesic.mathdoc.fr/item/DAS_2018_a6/