Counting rational points on quadric surfaces
Discrete analysis (2018) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We give an upper bound for the number of rational points of height at most $B$, lying on a surface defined by a quadratic form $Q$. The bound shows an explicit dependence on $Q$. It is optimal with respect to $B$, and is also optimal for typical forms $Q$.
Publié le :
@article{DAS_2018_a6,
     author = {T. D. Browning and D. R. Heath-Brown},
     title = {Counting rational points on quadric surfaces},
     journal = {Discrete analysis},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2018_a6/}
}
TY  - JOUR
AU  - T. D. Browning
AU  - D. R. Heath-Brown
TI  - Counting rational points on quadric surfaces
JO  - Discrete analysis
PY  - 2018
UR  - http://geodesic.mathdoc.fr/item/DAS_2018_a6/
LA  - en
ID  - DAS_2018_a6
ER  - 
%0 Journal Article
%A T. D. Browning
%A D. R. Heath-Brown
%T Counting rational points on quadric surfaces
%J Discrete analysis
%D 2018
%U http://geodesic.mathdoc.fr/item/DAS_2018_a6/
%G en
%F DAS_2018_a6
T. D. Browning; D. R. Heath-Brown. Counting rational points on quadric surfaces. Discrete analysis (2018). http://geodesic.mathdoc.fr/item/DAS_2018_a6/