Products of Differences over Arbitrary Finite Fields
Discrete analysis (2018) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

There exists an absolute constant $δ> 0$ such that for all $q$ and all subsets $A \subseteq \mathbb{F}_q$ of the finite field with $q$ elements, if $|A| > q^{2/3 - δ}$, then \[ |(A-A)(A-A)| = |\{ (a -b) (c-d) : a,b,c,d \in A\}| > \frac{q}{2}. \] Any $δ 1/13,542$ suffices for sufficiently large $q$. This improves the condition $|A| > q^{2/3}$, due to Bennett, Hart, Iosevich, Pakianathan, and Rudnev, that is typical for such questions. Our proof is based on a qualitatively optimal characterisation of sets $A,X \subseteq \mathbb{F}_q$ for which the number of solutions to the equation \[ (a_1-a_2) = x (a_3-a_4) \, , \; a_1,a_2, a_3, a_4 \in A, x \in X \] is nearly maximum. A key ingredient is determining exact algebraic structure of sets $A, X$ for which $|A + XA|$ is nearly minimum, which refines a result of Bourgain and Glibichuk using work of Gill, Helfgott, and Tao. We also prove a stronger statement for \[ (A-B)(C-D) = \{ (a -b) (c-d) : a \in A, b \in B, c \in C, d \in D\} \] when $A,B,C,D$ are sets in a prime field, generalising a result of Roche-Newton, Rudnev, Shkredov, and the authors.
Publié le :
@article{DAS_2018_a3,
     author = {Brendan Murphy and Giorgis Petridis},
     title = {Products of {Differences} over {Arbitrary} {Finite} {Fields}},
     journal = {Discrete analysis},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2018_a3/}
}
TY  - JOUR
AU  - Brendan Murphy
AU  - Giorgis Petridis
TI  - Products of Differences over Arbitrary Finite Fields
JO  - Discrete analysis
PY  - 2018
UR  - http://geodesic.mathdoc.fr/item/DAS_2018_a3/
LA  - en
ID  - DAS_2018_a3
ER  - 
%0 Journal Article
%A Brendan Murphy
%A Giorgis Petridis
%T Products of Differences over Arbitrary Finite Fields
%J Discrete analysis
%D 2018
%U http://geodesic.mathdoc.fr/item/DAS_2018_a3/
%G en
%F DAS_2018_a3
Brendan Murphy; Giorgis Petridis. Products of Differences over Arbitrary Finite Fields. Discrete analysis (2018). http://geodesic.mathdoc.fr/item/DAS_2018_a3/