Gabor orthogonal bases and convexity
Discrete analysis (2018)
Cet article a éte moissonné depuis la source Scholastica
Let $g(x)=χ_B(x)$ be the indicator function of a bounded convex set in $\Bbb R^d$, $d\geq 2$, with a smooth boundary and everywhere non-vanishing Gaussian curvature. Using a combinatorial appraoch we prove that if $d \neq 1 \mod 4$, then there does not exist $S \subset {\Bbb R}^{2d}$ such that ${ \{g(x-a)e^{2 πi x \cdot b} \}}_{(a,b) \in S}$ is an orthonormal basis for $L^2({\Bbb R}^d)$.
@article{DAS_2018_a2,
author = {Alex Iosevich and Azita Mayeli},
title = {Gabor orthogonal bases and convexity},
journal = {Discrete analysis},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DAS_2018_a2/}
}
Alex Iosevich; Azita Mayeli. Gabor orthogonal bases and convexity. Discrete analysis (2018). http://geodesic.mathdoc.fr/item/DAS_2018_a2/