Balancing sums of random vectors
Discrete analysis (2018) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We study a higher-dimensional 'balls-into-bins' problem. An infinite sequence of i.i.d. random vectors is revealed to us one vector at a time, and we are required to partition these vectors into a fixed number of bins in such a way as to keep the sums of the vectors in the different bins close together; how close can we keep these sums almost surely? This question, our primary focus in this paper, is closely related to the classical problem of partitioning a sequence of vectors into balanced subsequences, in addition to having applications to some problems in computer science.
Publié le :
@article{DAS_2018_a18,
     author = {Juhan Aru and Bhargav Narayanan and Alex Scott and Ramarathnam Venkatesan},
     title = {Balancing sums of random vectors},
     journal = {Discrete analysis},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2018_a18/}
}
TY  - JOUR
AU  - Juhan Aru
AU  - Bhargav Narayanan
AU  - Alex Scott
AU  - Ramarathnam Venkatesan
TI  - Balancing sums of random vectors
JO  - Discrete analysis
PY  - 2018
UR  - http://geodesic.mathdoc.fr/item/DAS_2018_a18/
LA  - en
ID  - DAS_2018_a18
ER  - 
%0 Journal Article
%A Juhan Aru
%A Bhargav Narayanan
%A Alex Scott
%A Ramarathnam Venkatesan
%T Balancing sums of random vectors
%J Discrete analysis
%D 2018
%U http://geodesic.mathdoc.fr/item/DAS_2018_a18/
%G en
%F DAS_2018_a18
Juhan Aru; Bhargav Narayanan; Alex Scott; Ramarathnam Venkatesan. Balancing sums of random vectors. Discrete analysis (2018). http://geodesic.mathdoc.fr/item/DAS_2018_a18/