Square functions and the Hamming cube: Duality
Discrete analysis (2018)
Cet article a éte moissonné depuis la source Scholastica
For $1$, any $n\geq 1$ and any $f:\{-1,1\}^{n} \to \mathbb{R}$, we obtain $(\mathbb{E} |\nabla f|^{p})^{1/p} \geq C(p)(\mathbb{E}|f|^{p} - |\mathbb{E}f|^{p})^{1/p}$ where $C(p)$ is the smallest positive zero of the confluent hypergeometric function ${}_{1}F_{1}(\frac{p}{2(1-p)}, \frac{1}{2}, \frac{x^{2}}{2})$. Our approach is based on a certain duality between the classical square function estimates on the Euclidean space and the gradient estimates on the Hamming cube.
@article{DAS_2018_a17,
author = {Paata Ivanisvili and Fedor Nazarov and Alexander Volberg},
title = {Square functions and the {Hamming} cube: {Duality}},
journal = {Discrete analysis},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DAS_2018_a17/}
}
Paata Ivanisvili; Fedor Nazarov; Alexander Volberg. Square functions and the Hamming cube: Duality. Discrete analysis (2018). http://geodesic.mathdoc.fr/item/DAS_2018_a17/