Beyond Expansion IV: Traces of Thin Semigroups
Discrete analysis (2018) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We continue our study of particular instances of the Affine Sieve, producing levels of distribution beyond those attainable from expansion alone. Motivated by McMullen's Arithmetic Chaos Conjecture regarding low-lying closed geodesics on the modular surface defined over a given number field, we study the set of traces for certain sub-semi-groups of SL2(Z) corresponding to absolutely Diophantine numbers. In particular, we are concerned with the level of distribution for this set. While the standard Affine Sieve procedure, combined with Bourgain-Gamburd-Sarnak's resonance-free region for the resolvent of a "congruence" transfer operator, produces some exponent of distribution alpha > 0, we are able to produce the exponent alpha 1/3. This recovers unconditionally the same exponent as what one would obtain under a Ramanujan-type conjecture for thin groups. A key ingredient, of independent interest, is a bound on the additive energy of SL2(Z).
Publié le :
@article{DAS_2018_a15,
     author = {Jean Bourgain and Alex Kontorovich},
     title = {Beyond {Expansion} {IV:} {Traces} of {Thin} {Semigroups}},
     journal = {Discrete analysis},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2018_a15/}
}
TY  - JOUR
AU  - Jean Bourgain
AU  - Alex Kontorovich
TI  - Beyond Expansion IV: Traces of Thin Semigroups
JO  - Discrete analysis
PY  - 2018
UR  - http://geodesic.mathdoc.fr/item/DAS_2018_a15/
LA  - en
ID  - DAS_2018_a15
ER  - 
%0 Journal Article
%A Jean Bourgain
%A Alex Kontorovich
%T Beyond Expansion IV: Traces of Thin Semigroups
%J Discrete analysis
%D 2018
%U http://geodesic.mathdoc.fr/item/DAS_2018_a15/
%G en
%F DAS_2018_a15
Jean Bourgain; Alex Kontorovich. Beyond Expansion IV: Traces of Thin Semigroups. Discrete analysis (2018). http://geodesic.mathdoc.fr/item/DAS_2018_a15/