A short proof of the middle levels theorem
Discrete analysis (2018) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

Consider the graph that has as vertices all bitstrings of length $2n+1$ with exactly $n$ or $n+1$ entries equal to 1, and an edge between any two bitstrings that differ in exactly one bit. The well-known middle levels conjecture asserts that this graph has a Hamilton cycle for any $n\geq 1$. In this paper we present a new proof of this conjecture, which is much shorter and more accessible than the original proof.
Publié le :
@article{DAS_2018_a13,
     author = {Petr Gregor and Torsten M\"utze and Jerri Nummenpalo},
     title = {A short proof of the middle levels theorem},
     journal = {Discrete analysis},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2018_a13/}
}
TY  - JOUR
AU  - Petr Gregor
AU  - Torsten Mütze
AU  - Jerri Nummenpalo
TI  - A short proof of the middle levels theorem
JO  - Discrete analysis
PY  - 2018
UR  - http://geodesic.mathdoc.fr/item/DAS_2018_a13/
LA  - en
ID  - DAS_2018_a13
ER  - 
%0 Journal Article
%A Petr Gregor
%A Torsten Mütze
%A Jerri Nummenpalo
%T A short proof of the middle levels theorem
%J Discrete analysis
%D 2018
%U http://geodesic.mathdoc.fr/item/DAS_2018_a13/
%G en
%F DAS_2018_a13
Petr Gregor; Torsten Mütze; Jerri Nummenpalo. A short proof of the middle levels theorem. Discrete analysis (2018). http://geodesic.mathdoc.fr/item/DAS_2018_a13/