The Fourier restriction and Kakeya problems over rings of integers modulo $N$
Discrete analysis (2018) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

The Fourier restriction phenomenon and the size of Kakeya sets are explored in the setting of the ring of integers modulo $N$ for general $N$ and a striking similarity with the corresponding euclidean problems is observed. One should contrast this with known results in the finite field setting.
Publié le :
@article{DAS_2018_a10,
     author = {Jonathan Hickman and James Wright},
     title = {The {Fourier} restriction and {Kakeya} problems over rings of integers modulo $N$},
     journal = {Discrete analysis},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2018_a10/}
}
TY  - JOUR
AU  - Jonathan Hickman
AU  - James Wright
TI  - The Fourier restriction and Kakeya problems over rings of integers modulo $N$
JO  - Discrete analysis
PY  - 2018
UR  - http://geodesic.mathdoc.fr/item/DAS_2018_a10/
LA  - en
ID  - DAS_2018_a10
ER  - 
%0 Journal Article
%A Jonathan Hickman
%A James Wright
%T The Fourier restriction and Kakeya problems over rings of integers modulo $N$
%J Discrete analysis
%D 2018
%U http://geodesic.mathdoc.fr/item/DAS_2018_a10/
%G en
%F DAS_2018_a10
Jonathan Hickman; James Wright. The Fourier restriction and Kakeya problems over rings of integers modulo $N$. Discrete analysis (2018). http://geodesic.mathdoc.fr/item/DAS_2018_a10/