Good Bounds in Certain Systems of True Complexity One
Discrete analysis (2018) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

Let $Φ= (φ_1,\dots,φ_6)$ be a system of $6$ linear forms in $3$ variables, i.e. $φ_i \colon \mathbb{Z}^3 \to \mathbb{Z}$ for each $i$. Suppose also that $Φ$ has Cauchy--Schwarz complexity $2$ and true complexity $1$, in the sense defined by Gowers and Wolf; in fact this is true generically in this setting. Finally let $G = \mathbb{F}_p^n$ for any $p$ prime and $n \ge 1$. Then we show that multilinear averages by $Φ$ are controlled by the $U^2$-norm, with a polynomial dependence; i.e. if $f_1,\dots,f_6 \colon G \to \mathbb{C}$ are functions with $\|f_i\|_{\infty} \le 1$ for each $i$, then for each $j$, $1 \le j \le 6$: \[ \left| \mathbb{E}_{x_1,x_2,x_3 \in G} f_1(\varphi_1(x_1,x_2,x_3)) \dots f_6(φ_6(x_1,x_2,x_3)) \right| \le \|f_j\|_{U^2}^{1/C} \] for some $C > 0$ depending on $Φ$. This recovers and strengthens a result of Gowers and Wolf in these cases. Moreover, the proof uses only multiple applications of the Cauchy--Schwarz inequality, avoiding appeals to the inverse theory of the Gowers norms. We also show that some dependence of $C$ on $Φ$ is necessary; that is, the constant $C$ can unavoidably become large as the coefficients of $Φ$ grow.
Publié le :
@article{DAS_2018_a0,
     author = {Freddie Manners},
     title = {Good {Bounds} in {Certain} {Systems} of {True} {Complexity} {One}},
     journal = {Discrete analysis},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2018_a0/}
}
TY  - JOUR
AU  - Freddie Manners
TI  - Good Bounds in Certain Systems of True Complexity One
JO  - Discrete analysis
PY  - 2018
UR  - http://geodesic.mathdoc.fr/item/DAS_2018_a0/
LA  - en
ID  - DAS_2018_a0
ER  - 
%0 Journal Article
%A Freddie Manners
%T Good Bounds in Certain Systems of True Complexity One
%J Discrete analysis
%D 2018
%U http://geodesic.mathdoc.fr/item/DAS_2018_a0/
%G en
%F DAS_2018_a0
Freddie Manners. Good Bounds in Certain Systems of True Complexity One. Discrete analysis (2018). http://geodesic.mathdoc.fr/item/DAS_2018_a0/