Fixed-energy harmonic functions
Discrete analysis (2017)
Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We study the map from conductances to edge energies for harmonic functions on finite graphs with Dirichlet boundary conditions. We prove that for any compatible acyclic orientation and choice of energies there is a unique choice of conductances such that the associated harmonic function realizes those orientations and energies. We call the associated function enharmonic. For rational energies and boundary data the Galois group of ${\mathbb Q}^{tr}$ (the totally real algebraic numbers) over ${\mathbb Q}$ permutes the enharmonic functions, acting on the set of compatible acyclic orientations. A consequence is the non-tileability of certain polygons by rational-area rectangles. For planar graphs there is an enharmonic conjugate function, together these form the real and imaginary parts of a "fixed energy" analytic function. In the planar scaling limit for ${\mathbb Z}^2$ (and the fixed south/west orientation), these functions satisfy a nonlinear analog of the Cauchy-Riemann equations, namely \begin{eqnarray*}u_xv_y = 1\\u_yv_x=-1.\end{eqnarray*} We give an analog of the Riemann mapping theorem for these functions, as well as a variational approach to finding solutions in both the discrete and continuous settings.
Publié le :
@article{DAS_2017_a2,
     author = {Aaron Abrams and Richard Kenyon},
     title = {Fixed-energy harmonic functions},
     journal = {Discrete analysis},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2017_a2/}
}
TY  - JOUR
AU  - Aaron Abrams
AU  - Richard Kenyon
TI  - Fixed-energy harmonic functions
JO  - Discrete analysis
PY  - 2017
UR  - http://geodesic.mathdoc.fr/item/DAS_2017_a2/
LA  - en
ID  - DAS_2017_a2
ER  - 
%0 Journal Article
%A Aaron Abrams
%A Richard Kenyon
%T Fixed-energy harmonic functions
%J Discrete analysis
%D 2017
%U http://geodesic.mathdoc.fr/item/DAS_2017_a2/
%G en
%F DAS_2017_a2
Aaron Abrams; Richard Kenyon. Fixed-energy harmonic functions. Discrete analysis (2017). http://geodesic.mathdoc.fr/item/DAS_2017_a2/