Dvoretzky's Theorem and the Complexity of Entanglement Detection
Discrete analysis (2017) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

The well-known Horodecki criterion asserts that a state $ρ$ on $\mathbf{C}^d \otimes \mathbf{C}^d$ is entangled if and only if there exists a positive map $Φ: \mathsf{M}_d \to \mathsf{M}_d$ such that the operator $(Φ\otimes \mathrm{Id})(ρ)$ is not positive semi-definite. We show that the number of such maps needed to detect all the robustly entangled states (i.e., states $ρ$ which remain entangled even in the presence of substantial randomizing noise) exceeds $\exp(c d^3 / \log d)$. The proof is based on the 1977 inequality of Figiel--Lindenstrauss--Milman, which ultimately relies on Dvoretzky's theorem about almost spherical sections of convex bodies. We interpret that inequality as a statement about approximability of convex bodies by polytopes with few vertices or with few faces and apply it to the study of fine properties of the set of quantum states and that of separable states. Our results can be thought of as geometrical manifestations of the complexity of entanglement detection.
Publié le :
@article{DAS_2017_a19,
     author = {Guillaume Aubrun and Stanislaw Szarek},
     title = {Dvoretzky's {Theorem} and the {Complexity} of {Entanglement} {Detection}},
     journal = {Discrete analysis},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2017_a19/}
}
TY  - JOUR
AU  - Guillaume Aubrun
AU  - Stanislaw Szarek
TI  - Dvoretzky's Theorem and the Complexity of Entanglement Detection
JO  - Discrete analysis
PY  - 2017
UR  - http://geodesic.mathdoc.fr/item/DAS_2017_a19/
LA  - en
ID  - DAS_2017_a19
ER  - 
%0 Journal Article
%A Guillaume Aubrun
%A Stanislaw Szarek
%T Dvoretzky's Theorem and the Complexity of Entanglement Detection
%J Discrete analysis
%D 2017
%U http://geodesic.mathdoc.fr/item/DAS_2017_a19/
%G en
%F DAS_2017_a19
Guillaume Aubrun; Stanislaw Szarek. Dvoretzky's Theorem and the Complexity of Entanglement Detection. Discrete analysis (2017). http://geodesic.mathdoc.fr/item/DAS_2017_a19/