On cap sets and the group-theoretic approach to matrix multiplication
Discrete analysis (2017)
Cet article a éte moissonné depuis la source Scholastica
In 2003, Cohn and Umans described a framework for proving upper bounds on the exponent $ω$ of matrix multiplication by reducing matrix multiplication to group algebra multiplication, and in 2005 Cohn, Kleinberg, Szegedy, and Umans proposed specific conjectures for how to obtain $ω=2$. In this paper we rule out obtaining $ω=2$ in this framework from abelian groups of bounded exponent. To do this we bound the size of tricolored sum-free sets in such groups, extending the breakthrough results of Croot, Lev, Pach, Ellenberg, and Gijswijt on cap sets. As a byproduct of our proof, we show that a variant of tensor rank due to Tao gives a quantitative understanding of the notion of unstable tensor from geometric invariant theory.
@article{DAS_2017_a17,
author = {Jonah Blasiak and Thomas Church and Henry Cohn and Joshua A. Grochow and Eric Naslund and William F. Sawin and Chris Umans},
title = {On cap sets and the group-theoretic approach to matrix multiplication},
journal = {Discrete analysis},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DAS_2017_a17/}
}
TY - JOUR AU - Jonah Blasiak AU - Thomas Church AU - Henry Cohn AU - Joshua A. Grochow AU - Eric Naslund AU - William F. Sawin AU - Chris Umans TI - On cap sets and the group-theoretic approach to matrix multiplication JO - Discrete analysis PY - 2017 UR - http://geodesic.mathdoc.fr/item/DAS_2017_a17/ LA - en ID - DAS_2017_a17 ER -
%0 Journal Article %A Jonah Blasiak %A Thomas Church %A Henry Cohn %A Joshua A. Grochow %A Eric Naslund %A William F. Sawin %A Chris Umans %T On cap sets and the group-theoretic approach to matrix multiplication %J Discrete analysis %D 2017 %U http://geodesic.mathdoc.fr/item/DAS_2017_a17/ %G en %F DAS_2017_a17
Jonah Blasiak; Thomas Church; Henry Cohn; Joshua A. Grochow; Eric Naslund; William F. Sawin; Chris Umans. On cap sets and the group-theoretic approach to matrix multiplication. Discrete analysis (2017). http://geodesic.mathdoc.fr/item/DAS_2017_a17/