Parametric Presburger arithmetic: logic, combinatorics, and quasi-polynomial behavior
Discrete analysis (2017) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

Parametric Presburger arithmetic concerns families of sets S_t in Z^d, for t in N, that are defined using addition, inequalities, constants in Z, Boolean operations, multiplication by t, and quantifiers on variables ranging over Z. That is, such families are defined using quantifiers and Boolean combinations of formulas of the form a(t) x = b(t), where a(t) is in Z[t]^d, b(t) in Z[t]. A function g: N -> Z is a quasi-polynomial if there exists a period m and polynomials f_0, ..., f_{m-1} in Q[t] such that g(t)=f_i(t) for t congruent to i (mod m.) Recent results of Chen, Li, Sam; Calegari, Walker; Roune, Woods; and Shen concern specific families in parametric Presburger arithmetic that exhibit quasi-polynomial behavior. For example, S_t might be an a quasi-polynomial function of t or an element x(t) in S_t might be specifiable as a function with quasi-polynomial coordinates, for sufficiently large t. Woods conjectured that all parametric Presburger sets exhibit this quasi-polynomial behavior. Here, we prove this conjecture, using various tools from logic and combinatorics.
Publié le :
@article{DAS_2017_a16,
     author = {Tristram Bogart and John Goodrick and Kevin Woods},
     title = {Parametric {Presburger} arithmetic: logic, combinatorics, and quasi-polynomial behavior},
     journal = {Discrete analysis},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2017_a16/}
}
TY  - JOUR
AU  - Tristram Bogart
AU  - John Goodrick
AU  - Kevin Woods
TI  - Parametric Presburger arithmetic: logic, combinatorics, and quasi-polynomial behavior
JO  - Discrete analysis
PY  - 2017
UR  - http://geodesic.mathdoc.fr/item/DAS_2017_a16/
LA  - en
ID  - DAS_2017_a16
ER  - 
%0 Journal Article
%A Tristram Bogart
%A John Goodrick
%A Kevin Woods
%T Parametric Presburger arithmetic: logic, combinatorics, and quasi-polynomial behavior
%J Discrete analysis
%D 2017
%U http://geodesic.mathdoc.fr/item/DAS_2017_a16/
%G en
%F DAS_2017_a16
Tristram Bogart; John Goodrick; Kevin Woods. Parametric Presburger arithmetic: logic, combinatorics, and quasi-polynomial behavior. Discrete analysis (2017). http://geodesic.mathdoc.fr/item/DAS_2017_a16/