Quantitative bounds in the polynomial Szemerédi theorem: the homogeneous case
Discrete analysis (2017) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We obtain quantitative bounds in the polynomial Szemerédi theorem of Bergelson and Leibman, provided the polynomials are homogeneous and of the same degree. Such configurations include arithmetic progressions with common difference equal to a perfect kth power.
Publié le :
@article{DAS_2017_a15,
     author = {Sean Prendiville},
     title = {Quantitative bounds in the polynomial {Szemer\'edi} theorem: the homogeneous case},
     journal = {Discrete analysis},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2017_a15/}
}
TY  - JOUR
AU  - Sean Prendiville
TI  - Quantitative bounds in the polynomial Szemerédi theorem: the homogeneous case
JO  - Discrete analysis
PY  - 2017
UR  - http://geodesic.mathdoc.fr/item/DAS_2017_a15/
LA  - en
ID  - DAS_2017_a15
ER  - 
%0 Journal Article
%A Sean Prendiville
%T Quantitative bounds in the polynomial Szemerédi theorem: the homogeneous case
%J Discrete analysis
%D 2017
%U http://geodesic.mathdoc.fr/item/DAS_2017_a15/
%G en
%F DAS_2017_a15
Sean Prendiville. Quantitative bounds in the polynomial Szemerédi theorem: the homogeneous case. Discrete analysis (2017). http://geodesic.mathdoc.fr/item/DAS_2017_a15/