Quantitative bounds in the polynomial Szemerédi theorem: the homogeneous case
Discrete analysis (2017)
Cet article a éte moissonné depuis la source Scholastica
We obtain quantitative bounds in the polynomial Szemerédi theorem of Bergelson and Leibman, provided the polynomials are homogeneous and of the same degree. Such configurations include arithmetic progressions with common difference equal to a perfect kth power.
@article{DAS_2017_a15,
author = {Sean Prendiville},
title = {Quantitative bounds in the polynomial {Szemer\'edi} theorem: the homogeneous case},
journal = {Discrete analysis},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DAS_2017_a15/}
}
Sean Prendiville. Quantitative bounds in the polynomial Szemerédi theorem: the homogeneous case. Discrete analysis (2017). http://geodesic.mathdoc.fr/item/DAS_2017_a15/