Quasirandom Cayley graphs
Discrete analysis (2017) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We prove that the properties of having small discrepancy and having small second eigenvalue are equivalent in Cayley graphs, extending a result of Kohayakawa, Rödl, and Schacht, who treated the abelian case. The proof relies on Grothendieck's inequality. As a corollary, we also prove that a similar result holds in all vertex-transitive graphs.
Publié le :
@article{DAS_2017_a14,
     author = {David Conlon and Yufei Zhao},
     title = {Quasirandom {Cayley} graphs},
     journal = {Discrete analysis},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2017_a14/}
}
TY  - JOUR
AU  - David Conlon
AU  - Yufei Zhao
TI  - Quasirandom Cayley graphs
JO  - Discrete analysis
PY  - 2017
UR  - http://geodesic.mathdoc.fr/item/DAS_2017_a14/
LA  - en
ID  - DAS_2017_a14
ER  - 
%0 Journal Article
%A David Conlon
%A Yufei Zhao
%T Quasirandom Cayley graphs
%J Discrete analysis
%D 2017
%U http://geodesic.mathdoc.fr/item/DAS_2017_a14/
%G en
%F DAS_2017_a14
David Conlon; Yufei Zhao. Quasirandom Cayley graphs. Discrete analysis (2017). http://geodesic.mathdoc.fr/item/DAS_2017_a14/