Discrepancy of High-Dimensional Permutations
Discrete analysis (2016) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

Let $L$ be an order-$n$ Latin square. For $X, Y, Z \subseteq \{1, ... ,n\}$, let $L(X, Y. Z)$ be the number of triples $i\in X, j\in Y, k\in Z$ such that $L(i,j) = k$. We conjecture that asymptotically almost every Latin square satisfies $|L(X, Y, Z) - \frac 1n |X||Y||Z||\le O(\sqrt{|X||Y||Z|})$ for every $X, Y$ and $Z$. Let $\varepsilon(L):= \max |X||Y||Z|$ when $L(X, Y, Z)=0$. The above conjecture implies that $\varepsilon(L) \le O(n^2)$ holds asymptotically almost surely (this bound is obviously tight). We show that there exist Latin squares with $\varepsilon(L) \le O(n^2)$, and that $\varepsilon(L) \le O(n^2 \log^2 n)$ for almost every order-$n$ Latin square. On the other hand, we recall that $\varepsilon(L)\geq Ω(n^{33/14})$ if $L$ is the multiplication table of an order-$n$ group. Some of these results extend to higher dimensions. Many open problems remain.
Publié le :
@article{DAS_2016_a8,
     author = {Nathan Linial and Zur Luria},
     title = {Discrepancy of {High-Dimensional} {Permutations}},
     journal = {Discrete analysis},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2016_a8/}
}
TY  - JOUR
AU  - Nathan Linial
AU  - Zur Luria
TI  - Discrepancy of High-Dimensional Permutations
JO  - Discrete analysis
PY  - 2016
UR  - http://geodesic.mathdoc.fr/item/DAS_2016_a8/
LA  - en
ID  - DAS_2016_a8
ER  - 
%0 Journal Article
%A Nathan Linial
%A Zur Luria
%T Discrepancy of High-Dimensional Permutations
%J Discrete analysis
%D 2016
%U http://geodesic.mathdoc.fr/item/DAS_2016_a8/
%G en
%F DAS_2016_a8
Nathan Linial; Zur Luria. Discrepancy of High-Dimensional Permutations. Discrete analysis (2016). http://geodesic.mathdoc.fr/item/DAS_2016_a8/