Concatenation theorems for anti-Gowers-uniform functions and Host-Kra characteristic factors
Discrete analysis (2016) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We establish a number of "concatenation theorems" that assert, roughly speaking, that if a function exhibits "polynomial" (or "Gowers anti-uniform", "uniformly almost periodic", or "nilsequence") behaviour in two different directions separately, then it also exhibits the same behavior (but at higher degree) in both directions jointly. Among other things, this allows one to control averaged local Gowers uniformity norms by global Gowers uniformity norms. In a sequel to this paper, we will apply such control to obtain asymptotics for "polynomial progressions" $n+P_1(r),\dots,n+P_k(r)$ in various sets of integers, such as the prime numbers.
Publié le :
@article{DAS_2016_a6,
     author = {Terence Tao and Tamar Ziegler},
     title = {Concatenation theorems for {anti-Gowers-uniform} functions and {Host-Kra} characteristic factors},
     journal = {Discrete analysis},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2016_a6/}
}
TY  - JOUR
AU  - Terence Tao
AU  - Tamar Ziegler
TI  - Concatenation theorems for anti-Gowers-uniform functions and Host-Kra characteristic factors
JO  - Discrete analysis
PY  - 2016
UR  - http://geodesic.mathdoc.fr/item/DAS_2016_a6/
LA  - en
ID  - DAS_2016_a6
ER  - 
%0 Journal Article
%A Terence Tao
%A Tamar Ziegler
%T Concatenation theorems for anti-Gowers-uniform functions and Host-Kra characteristic factors
%J Discrete analysis
%D 2016
%U http://geodesic.mathdoc.fr/item/DAS_2016_a6/
%G en
%F DAS_2016_a6
Terence Tao; Tamar Ziegler. Concatenation theorems for anti-Gowers-uniform functions and Host-Kra characteristic factors. Discrete analysis (2016). http://geodesic.mathdoc.fr/item/DAS_2016_a6/