Difference sets are not multiplicatively closed
Discrete analysis (2016) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We prove that for any finite set A of real numbers its difference set D:=A-A has large product set and quotient set, namely, |DD|, |D/D| \gg |D|^{1+c}, where c>0 is an absolute constant. A similar result takes place in the prime field F_p for sufficiently small D. It gives, in particular, that multiplicative subgroups of size less than p^{4/5-\eps} cannot be represented in the form A-A for any A from F_p.
Publié le :
@article{DAS_2016_a2,
     author = {Ilya D. Shkredov},
     title = {Difference sets are not multiplicatively closed},
     journal = {Discrete analysis},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2016_a2/}
}
TY  - JOUR
AU  - Ilya D. Shkredov
TI  - Difference sets are not multiplicatively closed
JO  - Discrete analysis
PY  - 2016
UR  - http://geodesic.mathdoc.fr/item/DAS_2016_a2/
LA  - en
ID  - DAS_2016_a2
ER  - 
%0 Journal Article
%A Ilya D. Shkredov
%T Difference sets are not multiplicatively closed
%J Discrete analysis
%D 2016
%U http://geodesic.mathdoc.fr/item/DAS_2016_a2/
%G en
%F DAS_2016_a2
Ilya D. Shkredov. Difference sets are not multiplicatively closed. Discrete analysis (2016). http://geodesic.mathdoc.fr/item/DAS_2016_a2/