Computing automorphism groups of shifts using atypical equivalence classes
Discrete analysis (2016) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

We study the automorphism group of an infinite minimal shift $(X,σ)$ such that the complexity difference function, $p(n+1)-p(n)$, is bounded. We give some new bounds on $\mbox{Aut}(X,σ)/\langle σ\rangle$ and also study the one-sided case. For a class of Toeplitz shifts, including the class of shifts defined by constant length primitive substitutions with a coincidence and with height one, we show that the two-sided automorphism group is a cyclic group. We next focus on shifts generated by primitive constant length substitutions. For these shifts, we give an algorithm that computes their two-sided automorphism group, As a corollary we describe how to compute the set of conjugacies between two such shifts.
Publié le :
@article{DAS_2016_a16,
     author = {Ethan M. Coven and Anthony Quas and Reem Yassawi},
     title = {Computing automorphism groups of shifts using atypical equivalence classes},
     journal = {Discrete analysis},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2016_a16/}
}
TY  - JOUR
AU  - Ethan M. Coven
AU  - Anthony Quas
AU  - Reem Yassawi
TI  - Computing automorphism groups of shifts using atypical equivalence classes
JO  - Discrete analysis
PY  - 2016
UR  - http://geodesic.mathdoc.fr/item/DAS_2016_a16/
LA  - en
ID  - DAS_2016_a16
ER  - 
%0 Journal Article
%A Ethan M. Coven
%A Anthony Quas
%A Reem Yassawi
%T Computing automorphism groups of shifts using atypical equivalence classes
%J Discrete analysis
%D 2016
%U http://geodesic.mathdoc.fr/item/DAS_2016_a16/
%G en
%F DAS_2016_a16
Ethan M. Coven; Anthony Quas; Reem Yassawi. Computing automorphism groups of shifts using atypical equivalence classes. Discrete analysis (2016). http://geodesic.mathdoc.fr/item/DAS_2016_a16/