On the number of lattice convex chains
Discrete analysis (2016) Cet article a éte moissonné depuis la source Scholastica

Voir la notice de l'article

An asymptotic formula is presented for the number of planar lattice convex polygonal lines joining the origin to a distant point of the diagonal. The formula involves the non-trivial zeros of the zeta function and leads to a necessary and sufficient condition for the Riemann Hypothesis to hold.
Publié le :
@article{DAS_2016_a0,
     author = {Julien Bureaux and Nathana\"el Enriquez},
     title = {On the number of lattice convex chains},
     journal = {Discrete analysis},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DAS_2016_a0/}
}
TY  - JOUR
AU  - Julien Bureaux
AU  - Nathanaël Enriquez
TI  - On the number of lattice convex chains
JO  - Discrete analysis
PY  - 2016
UR  - http://geodesic.mathdoc.fr/item/DAS_2016_a0/
LA  - en
ID  - DAS_2016_a0
ER  - 
%0 Journal Article
%A Julien Bureaux
%A Nathanaël Enriquez
%T On the number of lattice convex chains
%J Discrete analysis
%D 2016
%U http://geodesic.mathdoc.fr/item/DAS_2016_a0/
%G en
%F DAS_2016_a0
Julien Bureaux; Nathanaël Enriquez. On the number of lattice convex chains. Discrete analysis (2016). http://geodesic.mathdoc.fr/item/DAS_2016_a0/