Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DAN_1997_352_1_a2, author = {I. M. Gel'fand and M. I. Graev and M. Zyskin}, title = {A problem of integral geometry on $K^3$ connected with harmonic analysis on the group $SL(2,K)$, where $K$ is an arbitrary continuous locally compact field}, journal = {Doklady Akademii Nauk}, pages = {15--17}, publisher = {mathdoc}, volume = {352}, number = {1}, year = {1997}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DAN_1997_352_1_a2/} }
TY - JOUR AU - I. M. Gel'fand AU - M. I. Graev AU - M. Zyskin TI - A problem of integral geometry on $K^3$ connected with harmonic analysis on the group $SL(2,K)$, where $K$ is an arbitrary continuous locally compact field JO - Doklady Akademii Nauk PY - 1997 SP - 15 EP - 17 VL - 352 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DAN_1997_352_1_a2/ LA - ru ID - DAN_1997_352_1_a2 ER -
%0 Journal Article %A I. M. Gel'fand %A M. I. Graev %A M. Zyskin %T A problem of integral geometry on $K^3$ connected with harmonic analysis on the group $SL(2,K)$, where $K$ is an arbitrary continuous locally compact field %J Doklady Akademii Nauk %D 1997 %P 15-17 %V 352 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DAN_1997_352_1_a2/ %G ru %F DAN_1997_352_1_a2
I. M. Gel'fand; M. I. Graev; M. Zyskin. A problem of integral geometry on $K^3$ connected with harmonic analysis on the group $SL(2,K)$, where $K$ is an arbitrary continuous locally compact field. Doklady Akademii Nauk, Tome 352 (1997) no. 1, pp. 15-17. http://geodesic.mathdoc.fr/item/DAN_1997_352_1_a2/