A problem of integral geometry on $K^3$ connected with harmonic analysis on the group $SL(2,K)$, where $K$ is an arbitrary continuous locally compact field
Doklady Akademii Nauk, Tome 352 (1997) no. 1, pp. 15-17
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DAN_1997_352_1_a2,
author = {I. M. Gel'fand and M. I. Graev and M. Zyskin},
title = {A problem of integral geometry on $K^3$ connected with harmonic analysis on the group $SL(2,K)$, where $K$ is an arbitrary continuous locally compact field},
journal = {Doklady Akademii Nauk},
pages = {15--17},
publisher = {mathdoc},
volume = {352},
number = {1},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DAN_1997_352_1_a2/}
}
TY - JOUR AU - I. M. Gel'fand AU - M. I. Graev AU - M. Zyskin TI - A problem of integral geometry on $K^3$ connected with harmonic analysis on the group $SL(2,K)$, where $K$ is an arbitrary continuous locally compact field JO - Doklady Akademii Nauk PY - 1997 SP - 15 EP - 17 VL - 352 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DAN_1997_352_1_a2/ LA - ru ID - DAN_1997_352_1_a2 ER -
%0 Journal Article %A I. M. Gel'fand %A M. I. Graev %A M. Zyskin %T A problem of integral geometry on $K^3$ connected with harmonic analysis on the group $SL(2,K)$, where $K$ is an arbitrary continuous locally compact field %J Doklady Akademii Nauk %D 1997 %P 15-17 %V 352 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DAN_1997_352_1_a2/ %G ru %F DAN_1997_352_1_a2
I. M. Gel'fand; M. I. Graev; M. Zyskin. A problem of integral geometry on $K^3$ connected with harmonic analysis on the group $SL(2,K)$, where $K$ is an arbitrary continuous locally compact field. Doklady Akademii Nauk, Tome 352 (1997) no. 1, pp. 15-17. http://geodesic.mathdoc.fr/item/DAN_1997_352_1_a2/