A problem of integral geometry on $K^3$ connected with harmonic analysis on the group $SL(2,K)$, where $K$ is an arbitrary continuous locally compact field
Doklady Akademii Nauk, Tome 352 (1997) no. 1, pp. 15-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1997_352_1_a2,
     author = {I. M. Gel'fand and M. I. Graev and M. Zyskin},
     title = {A problem of integral geometry on $K^3$ connected with harmonic analysis on the group $SL(2,K)$, where $K$ is an arbitrary continuous locally compact field},
     journal = {Doklady Akademii Nauk},
     pages = {15--17},
     publisher = {mathdoc},
     volume = {352},
     number = {1},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1997_352_1_a2/}
}
TY  - JOUR
AU  - I. M. Gel'fand
AU  - M. I. Graev
AU  - M. Zyskin
TI  - A problem of integral geometry on $K^3$ connected with harmonic analysis on the group $SL(2,K)$, where $K$ is an arbitrary continuous locally compact field
JO  - Doklady Akademii Nauk
PY  - 1997
SP  - 15
EP  - 17
VL  - 352
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1997_352_1_a2/
LA  - ru
ID  - DAN_1997_352_1_a2
ER  - 
%0 Journal Article
%A I. M. Gel'fand
%A M. I. Graev
%A M. Zyskin
%T A problem of integral geometry on $K^3$ connected with harmonic analysis on the group $SL(2,K)$, where $K$ is an arbitrary continuous locally compact field
%J Doklady Akademii Nauk
%D 1997
%P 15-17
%V 352
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1997_352_1_a2/
%G ru
%F DAN_1997_352_1_a2
I. M. Gel'fand; M. I. Graev; M. Zyskin. A problem of integral geometry on $K^3$ connected with harmonic analysis on the group $SL(2,K)$, where $K$ is an arbitrary continuous locally compact field. Doklady Akademii Nauk, Tome 352 (1997) no. 1, pp. 15-17. http://geodesic.mathdoc.fr/item/DAN_1997_352_1_a2/