Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DAN_1996_349_2_a3, author = {V. A. Il'in and E. I. Moiseev}, title = {An estimate, accurate to within a constant factor and uniform in $\mathbb{R}^N$ for $N=2$ and $N=3$, of the increment of the spectral function with respect to the spectral parameter for a {Schr\"odinger} operator with a potential satisfying the {Kato} condition when the spectral function is taken on the diagonal}, journal = {Doklady Akademii Nauk}, pages = {159--161}, publisher = {mathdoc}, volume = {349}, number = {2}, year = {1996}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DAN_1996_349_2_a3/} }
TY - JOUR AU - V. A. Il'in AU - E. I. Moiseev TI - An estimate, accurate to within a constant factor and uniform in $\mathbb{R}^N$ for $N=2$ and $N=3$, of the increment of the spectral function with respect to the spectral parameter for a Schr\"odinger operator with a potential satisfying the Kato condition when the spectral function is taken on the diagonal JO - Doklady Akademii Nauk PY - 1996 SP - 159 EP - 161 VL - 349 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DAN_1996_349_2_a3/ LA - ru ID - DAN_1996_349_2_a3 ER -
%0 Journal Article %A V. A. Il'in %A E. I. Moiseev %T An estimate, accurate to within a constant factor and uniform in $\mathbb{R}^N$ for $N=2$ and $N=3$, of the increment of the spectral function with respect to the spectral parameter for a Schr\"odinger operator with a potential satisfying the Kato condition when the spectral function is taken on the diagonal %J Doklady Akademii Nauk %D 1996 %P 159-161 %V 349 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DAN_1996_349_2_a3/ %G ru %F DAN_1996_349_2_a3
V. A. Il'in; E. I. Moiseev. An estimate, accurate to within a constant factor and uniform in $\mathbb{R}^N$ for $N=2$ and $N=3$, of the increment of the spectral function with respect to the spectral parameter for a Schr\"odinger operator with a potential satisfying the Kato condition when the spectral function is taken on the diagonal. Doklady Akademii Nauk, Tome 349 (1996) no. 2, pp. 159-161. http://geodesic.mathdoc.fr/item/DAN_1996_349_2_a3/