Invariant tori of Hamiltonian systems that are nondegenerate in R\"ussmann’s sense
Doklady Akademii Nauk, Tome 346 (1996) no. 5, pp. 590-593.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1996_346_5_a2,
     author = {M. B. Sevryuk},
     title = {Invariant tori of {Hamiltonian} systems that are nondegenerate in {R\"ussmann{\textquoteright}s} sense},
     journal = {Doklady Akademii Nauk},
     pages = {590--593},
     publisher = {mathdoc},
     volume = {346},
     number = {5},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1996_346_5_a2/}
}
TY  - JOUR
AU  - M. B. Sevryuk
TI  - Invariant tori of Hamiltonian systems that are nondegenerate in R\"ussmann’s sense
JO  - Doklady Akademii Nauk
PY  - 1996
SP  - 590
EP  - 593
VL  - 346
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1996_346_5_a2/
LA  - ru
ID  - DAN_1996_346_5_a2
ER  - 
%0 Journal Article
%A M. B. Sevryuk
%T Invariant tori of Hamiltonian systems that are nondegenerate in R\"ussmann’s sense
%J Doklady Akademii Nauk
%D 1996
%P 590-593
%V 346
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1996_346_5_a2/
%G ru
%F DAN_1996_346_5_a2
M. B. Sevryuk. Invariant tori of Hamiltonian systems that are nondegenerate in R\"ussmann’s sense. Doklady Akademii Nauk, Tome 346 (1996) no. 5, pp. 590-593. http://geodesic.mathdoc.fr/item/DAN_1996_346_5_a2/