Sequences of operators that are bounded in measure
Doklady Akademii Nauk, Tome 334 (1994) no. 6, pp. 696-698.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1994_334_6_a6,
     author = {S. A. Pichugov},
     title = {Sequences of operators that are bounded in measure},
     journal = {Doklady Akademii Nauk},
     pages = {696--698},
     publisher = {mathdoc},
     volume = {334},
     number = {6},
     year = {1994},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1994_334_6_a6/}
}
TY  - JOUR
AU  - S. A. Pichugov
TI  - Sequences of operators that are bounded in measure
JO  - Doklady Akademii Nauk
PY  - 1994
SP  - 696
EP  - 698
VL  - 334
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1994_334_6_a6/
LA  - ru
ID  - DAN_1994_334_6_a6
ER  - 
%0 Journal Article
%A S. A. Pichugov
%T Sequences of operators that are bounded in measure
%J Doklady Akademii Nauk
%D 1994
%P 696-698
%V 334
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1994_334_6_a6/
%G ru
%F DAN_1994_334_6_a6
S. A. Pichugov. Sequences of operators that are bounded in measure. Doklady Akademii Nauk, Tome 334 (1994) no. 6, pp. 696-698. http://geodesic.mathdoc.fr/item/DAN_1994_334_6_a6/