Decoding the Reed–Solomon code when the number of errors is greater than half of the code distance
Doklady Akademii Nauk, Tome 330 (1993) no. 1, pp. 20-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{DAN_1993_330_1_a5,
     author = {V. M. Sidel'nikov},
     title = {Decoding the {Reed{\textendash}Solomon} code when the number of errors is greater than half of the code distance},
     journal = {Doklady Akademii Nauk},
     pages = {20--23},
     year = {1993},
     volume = {330},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1993_330_1_a5/}
}
TY  - JOUR
AU  - V. M. Sidel'nikov
TI  - Decoding the Reed–Solomon code when the number of errors is greater than half of the code distance
JO  - Doklady Akademii Nauk
PY  - 1993
SP  - 20
EP  - 23
VL  - 330
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DAN_1993_330_1_a5/
LA  - ru
ID  - DAN_1993_330_1_a5
ER  - 
%0 Journal Article
%A V. M. Sidel'nikov
%T Decoding the Reed–Solomon code when the number of errors is greater than half of the code distance
%J Doklady Akademii Nauk
%D 1993
%P 20-23
%V 330
%N 1
%U http://geodesic.mathdoc.fr/item/DAN_1993_330_1_a5/
%G ru
%F DAN_1993_330_1_a5
V. M. Sidel'nikov. Decoding the Reed–Solomon code when the number of errors is greater than half of the code distance. Doklady Akademii Nauk, Tome 330 (1993) no. 1, pp. 20-23. http://geodesic.mathdoc.fr/item/DAN_1993_330_1_a5/