On the Hilbert problem in the sense of $L^p$-convergence, $p>1$
Doklady Akademii Nauk, Tome 328 (1993) no. 4, pp. 421-423.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1993_328_4_a0,
     author = {H. M. Hayrapetyan},
     title = {On the {Hilbert} problem in the sense of $L^p$-convergence, $p>1$},
     journal = {Doklady Akademii Nauk},
     pages = {421--423},
     publisher = {mathdoc},
     volume = {328},
     number = {4},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1993_328_4_a0/}
}
TY  - JOUR
AU  - H. M. Hayrapetyan
TI  - On the Hilbert problem in the sense of $L^p$-convergence, $p>1$
JO  - Doklady Akademii Nauk
PY  - 1993
SP  - 421
EP  - 423
VL  - 328
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1993_328_4_a0/
LA  - ru
ID  - DAN_1993_328_4_a0
ER  - 
%0 Journal Article
%A H. M. Hayrapetyan
%T On the Hilbert problem in the sense of $L^p$-convergence, $p>1$
%J Doklady Akademii Nauk
%D 1993
%P 421-423
%V 328
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1993_328_4_a0/
%G ru
%F DAN_1993_328_4_a0
H. M. Hayrapetyan. On the Hilbert problem in the sense of $L^p$-convergence, $p>1$. Doklady Akademii Nauk, Tome 328 (1993) no. 4, pp. 421-423. http://geodesic.mathdoc.fr/item/DAN_1993_328_4_a0/