The relation between structure and geometry of sets of unbounded divergence and a method of summation of multiple Fourier series of a function from $L_p$, $p>1$, equal to zero on a given set
Doklady Akademii Nauk, Tome 321 (1991) no. 6, pp. 1133-1137.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1991_321_6_a1,
     author = {I. L. Bloshanskii},
     title = {The relation between structure and geometry of sets of unbounded divergence and a method of summation of multiple {Fourier} series of a function from $L_p$, $p>1$, equal to zero on a given set},
     journal = {Doklady Akademii Nauk},
     pages = {1133--1137},
     publisher = {mathdoc},
     volume = {321},
     number = {6},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1991_321_6_a1/}
}
TY  - JOUR
AU  - I. L. Bloshanskii
TI  - The relation between structure and geometry of sets of unbounded divergence and a method of summation of multiple Fourier series of a function from $L_p$, $p>1$, equal to zero on a given set
JO  - Doklady Akademii Nauk
PY  - 1991
SP  - 1133
EP  - 1137
VL  - 321
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1991_321_6_a1/
LA  - ru
ID  - DAN_1991_321_6_a1
ER  - 
%0 Journal Article
%A I. L. Bloshanskii
%T The relation between structure and geometry of sets of unbounded divergence and a method of summation of multiple Fourier series of a function from $L_p$, $p>1$, equal to zero on a given set
%J Doklady Akademii Nauk
%D 1991
%P 1133-1137
%V 321
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1991_321_6_a1/
%G ru
%F DAN_1991_321_6_a1
I. L. Bloshanskii. The relation between structure and geometry of sets of unbounded divergence and a method of summation of multiple Fourier series of a function from $L_p$, $p>1$, equal to zero on a given set. Doklady Akademii Nauk, Tome 321 (1991) no. 6, pp. 1133-1137. http://geodesic.mathdoc.fr/item/DAN_1991_321_6_a1/