The Lyusternik–Shnirel'man theory for transversally convex subsets of Hilbert manifolds and its application in optimal control theory
Doklady Akademii Nauk, Tome 319 (1991) no. 1, pp. 18-21
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DAN_1991_319_1_a2,
author = {S. A. Vakhrameev},
title = {The {Lyusternik{\textendash}Shnirel'man} theory for transversally convex subsets of {Hilbert} manifolds and its application in optimal control theory},
journal = {Doklady Akademii Nauk},
pages = {18--21},
year = {1991},
volume = {319},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DAN_1991_319_1_a2/}
}
TY - JOUR AU - S. A. Vakhrameev TI - The Lyusternik–Shnirel'man theory for transversally convex subsets of Hilbert manifolds and its application in optimal control theory JO - Doklady Akademii Nauk PY - 1991 SP - 18 EP - 21 VL - 319 IS - 1 UR - http://geodesic.mathdoc.fr/item/DAN_1991_319_1_a2/ LA - ru ID - DAN_1991_319_1_a2 ER -
%0 Journal Article %A S. A. Vakhrameev %T The Lyusternik–Shnirel'man theory for transversally convex subsets of Hilbert manifolds and its application in optimal control theory %J Doklady Akademii Nauk %D 1991 %P 18-21 %V 319 %N 1 %U http://geodesic.mathdoc.fr/item/DAN_1991_319_1_a2/ %G ru %F DAN_1991_319_1_a2
S. A. Vakhrameev. The Lyusternik–Shnirel'man theory for transversally convex subsets of Hilbert manifolds and its application in optimal control theory. Doklady Akademii Nauk, Tome 319 (1991) no. 1, pp. 18-21. http://geodesic.mathdoc.fr/item/DAN_1991_319_1_a2/