Boundary correspondence theorems for $L^1_n$-extendable homeomorphisms of domains $G\subset R^n$ that can be compactified by the metric $\rho_G$
Doklady Akademii Nauk, Tome 312 (1990) no. 6, pp. 1308-1312.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1990_312_6_a5,
     author = {B. P. Kufarev},
     title = {Boundary correspondence theorems for $L^1_n$-extendable homeomorphisms of domains $G\subset R^n$ that can be compactified by the metric $\rho_G$},
     journal = {Doklady Akademii Nauk},
     pages = {1308--1312},
     publisher = {mathdoc},
     volume = {312},
     number = {6},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1990_312_6_a5/}
}
TY  - JOUR
AU  - B. P. Kufarev
TI  - Boundary correspondence theorems for $L^1_n$-extendable homeomorphisms of domains $G\subset R^n$ that can be compactified by the metric $\rho_G$
JO  - Doklady Akademii Nauk
PY  - 1990
SP  - 1308
EP  - 1312
VL  - 312
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1990_312_6_a5/
LA  - ru
ID  - DAN_1990_312_6_a5
ER  - 
%0 Journal Article
%A B. P. Kufarev
%T Boundary correspondence theorems for $L^1_n$-extendable homeomorphisms of domains $G\subset R^n$ that can be compactified by the metric $\rho_G$
%J Doklady Akademii Nauk
%D 1990
%P 1308-1312
%V 312
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1990_312_6_a5/
%G ru
%F DAN_1990_312_6_a5
B. P. Kufarev. Boundary correspondence theorems for $L^1_n$-extendable homeomorphisms of domains $G\subset R^n$ that can be compactified by the metric $\rho_G$. Doklady Akademii Nauk, Tome 312 (1990) no. 6, pp. 1308-1312. http://geodesic.mathdoc.fr/item/DAN_1990_312_6_a5/