Every globally minimal surface in compact homogeneous spaces has
Doklady Akademii Nauk, Tome 310 (1990) no. 2, pp. 294-297.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1990_310_2_a8,
     author = {L\^e H\^ong V\^an},
     title = {Every globally minimal surface in compact homogeneous spaces has},
     journal = {Doklady Akademii Nauk},
     pages = {294--297},
     publisher = {mathdoc},
     volume = {310},
     number = {2},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1990_310_2_a8/}
}
TY  - JOUR
AU  - Lê Hông Vân
TI  - Every globally minimal surface in compact homogeneous spaces has
JO  - Doklady Akademii Nauk
PY  - 1990
SP  - 294
EP  - 297
VL  - 310
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1990_310_2_a8/
LA  - ru
ID  - DAN_1990_310_2_a8
ER  - 
%0 Journal Article
%A Lê Hông Vân
%T Every globally minimal surface in compact homogeneous spaces has
%J Doklady Akademii Nauk
%D 1990
%P 294-297
%V 310
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1990_310_2_a8/
%G ru
%F DAN_1990_310_2_a8
Lê Hông Vân. Every globally minimal surface in compact homogeneous spaces has. Doklady Akademii Nauk, Tome 310 (1990) no. 2, pp. 294-297. http://geodesic.mathdoc.fr/item/DAN_1990_310_2_a8/