A property of systems of functions that are complete in $W^1_2(\Omega)$
Doklady Akademii Nauk, Tome 307 (1989) no. 6, pp. 1304-1307.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1989_307_6_a4,
     author = {S. A. Gabov},
     title = {A property of systems of functions that are complete in $W^1_2(\Omega)$},
     journal = {Doklady Akademii Nauk},
     pages = {1304--1307},
     publisher = {mathdoc},
     volume = {307},
     number = {6},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1989_307_6_a4/}
}
TY  - JOUR
AU  - S. A. Gabov
TI  - A property of systems of functions that are complete in $W^1_2(\Omega)$
JO  - Doklady Akademii Nauk
PY  - 1989
SP  - 1304
EP  - 1307
VL  - 307
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1989_307_6_a4/
LA  - ru
ID  - DAN_1989_307_6_a4
ER  - 
%0 Journal Article
%A S. A. Gabov
%T A property of systems of functions that are complete in $W^1_2(\Omega)$
%J Doklady Akademii Nauk
%D 1989
%P 1304-1307
%V 307
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1989_307_6_a4/
%G ru
%F DAN_1989_307_6_a4
S. A. Gabov. A property of systems of functions that are complete in $W^1_2(\Omega)$. Doklady Akademii Nauk, Tome 307 (1989) no. 6, pp. 1304-1307. http://geodesic.mathdoc.fr/item/DAN_1989_307_6_a4/