A curve in $R^n$ that is homeomorphic to a straight line and that intersects every unbounded curve of bounded curvature
Doklady Akademii Nauk, Tome 305 (1989) no. 5, pp. 1042-1045
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DAN_1989_305_5_a3,
author = {A. V. Kuz'minykh},
title = {A curve in $R^n$ that is homeomorphic to a straight line and that intersects every unbounded curve of bounded curvature},
journal = {Doklady Akademii Nauk},
pages = {1042--1045},
year = {1989},
volume = {305},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DAN_1989_305_5_a3/}
}
TY - JOUR AU - A. V. Kuz'minykh TI - A curve in $R^n$ that is homeomorphic to a straight line and that intersects every unbounded curve of bounded curvature JO - Doklady Akademii Nauk PY - 1989 SP - 1042 EP - 1045 VL - 305 IS - 5 UR - http://geodesic.mathdoc.fr/item/DAN_1989_305_5_a3/ LA - ru ID - DAN_1989_305_5_a3 ER -
%0 Journal Article %A A. V. Kuz'minykh %T A curve in $R^n$ that is homeomorphic to a straight line and that intersects every unbounded curve of bounded curvature %J Doklady Akademii Nauk %D 1989 %P 1042-1045 %V 305 %N 5 %U http://geodesic.mathdoc.fr/item/DAN_1989_305_5_a3/ %G ru %F DAN_1989_305_5_a3
A. V. Kuz'minykh. A curve in $R^n$ that is homeomorphic to a straight line and that intersects every unbounded curve of bounded curvature. Doklady Akademii Nauk, Tome 305 (1989) no. 5, pp. 1042-1045. http://geodesic.mathdoc.fr/item/DAN_1989_305_5_a3/