A curve in $R^n$ that is homeomorphic to a straight line and that intersects every unbounded curve of bounded curvature
Doklady Akademii Nauk, Tome 305 (1989) no. 5, pp. 1042-1045.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1989_305_5_a3,
     author = {A. V. Kuz'minykh},
     title = {A curve in $R^n$ that is homeomorphic to a straight line and that intersects every unbounded curve of bounded curvature},
     journal = {Doklady Akademii Nauk},
     pages = {1042--1045},
     publisher = {mathdoc},
     volume = {305},
     number = {5},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1989_305_5_a3/}
}
TY  - JOUR
AU  - A. V. Kuz'minykh
TI  - A curve in $R^n$ that is homeomorphic to a straight line and that intersects every unbounded curve of bounded curvature
JO  - Doklady Akademii Nauk
PY  - 1989
SP  - 1042
EP  - 1045
VL  - 305
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1989_305_5_a3/
LA  - ru
ID  - DAN_1989_305_5_a3
ER  - 
%0 Journal Article
%A A. V. Kuz'minykh
%T A curve in $R^n$ that is homeomorphic to a straight line and that intersects every unbounded curve of bounded curvature
%J Doklady Akademii Nauk
%D 1989
%P 1042-1045
%V 305
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1989_305_5_a3/
%G ru
%F DAN_1989_305_5_a3
A. V. Kuz'minykh. A curve in $R^n$ that is homeomorphic to a straight line and that intersects every unbounded curve of bounded curvature. Doklady Akademii Nauk, Tome 305 (1989) no. 5, pp. 1042-1045. http://geodesic.mathdoc.fr/item/DAN_1989_305_5_a3/