Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DAN_1988_303_6_a12, author = {E. V. Karus and V. M. Berezkin and V. G. Filatov}, title = {``Introextension'' of potential fields as a ``physical'' regularization of {Poisson} equation based on the full gradient and concentration principle}, journal = {Doklady Akademii Nauk}, pages = {1335--1337}, publisher = {mathdoc}, volume = {303}, number = {6}, year = {1988}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DAN_1988_303_6_a12/} }
TY - JOUR AU - E. V. Karus AU - V. M. Berezkin AU - V. G. Filatov TI - ``Introextension'' of potential fields as a ``physical'' regularization of Poisson equation based on the full gradient and concentration principle JO - Doklady Akademii Nauk PY - 1988 SP - 1335 EP - 1337 VL - 303 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DAN_1988_303_6_a12/ LA - ru ID - DAN_1988_303_6_a12 ER -
%0 Journal Article %A E. V. Karus %A V. M. Berezkin %A V. G. Filatov %T ``Introextension'' of potential fields as a ``physical'' regularization of Poisson equation based on the full gradient and concentration principle %J Doklady Akademii Nauk %D 1988 %P 1335-1337 %V 303 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/DAN_1988_303_6_a12/ %G ru %F DAN_1988_303_6_a12
E. V. Karus; V. M. Berezkin; V. G. Filatov. ``Introextension'' of potential fields as a ``physical'' regularization of Poisson equation based on the full gradient and concentration principle. Doklady Akademii Nauk, Tome 303 (1988) no. 6, pp. 1335-1337. http://geodesic.mathdoc.fr/item/DAN_1988_303_6_a12/