Criteria for the exponential stability of solutions of equations with bounded aftereffect
Doklady Akademii Nauk, Tome 289 (1986) no. 1, pp. 11-14
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DAN_1986_289_1_a0,
author = {L. M. Berezanskii and V. V. Malygina and V. A. Sokolov},
title = {Criteria for the exponential stability of solutions of equations with bounded aftereffect},
journal = {Doklady Akademii Nauk},
pages = {11--14},
publisher = {mathdoc},
volume = {289},
number = {1},
year = {1986},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DAN_1986_289_1_a0/}
}
TY - JOUR AU - L. M. Berezanskii AU - V. V. Malygina AU - V. A. Sokolov TI - Criteria for the exponential stability of solutions of equations with bounded aftereffect JO - Doklady Akademii Nauk PY - 1986 SP - 11 EP - 14 VL - 289 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DAN_1986_289_1_a0/ LA - ru ID - DAN_1986_289_1_a0 ER -
%0 Journal Article %A L. M. Berezanskii %A V. V. Malygina %A V. A. Sokolov %T Criteria for the exponential stability of solutions of equations with bounded aftereffect %J Doklady Akademii Nauk %D 1986 %P 11-14 %V 289 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DAN_1986_289_1_a0/ %G ru %F DAN_1986_289_1_a0
L. M. Berezanskii; V. V. Malygina; V. A. Sokolov. Criteria for the exponential stability of solutions of equations with bounded aftereffect. Doklady Akademii Nauk, Tome 289 (1986) no. 1, pp. 11-14. http://geodesic.mathdoc.fr/item/DAN_1986_289_1_a0/