Criteria for the exponential stability of solutions of equations with bounded aftereffect
Doklady Akademii Nauk, Tome 289 (1986) no. 1, pp. 11-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1986_289_1_a0,
     author = {L. M. Berezanskii and V. V. Malygina and V. A. Sokolov},
     title = {Criteria for the exponential stability of solutions of equations with bounded aftereffect},
     journal = {Doklady Akademii Nauk},
     pages = {11--14},
     publisher = {mathdoc},
     volume = {289},
     number = {1},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1986_289_1_a0/}
}
TY  - JOUR
AU  - L. M. Berezanskii
AU  - V. V. Malygina
AU  - V. A. Sokolov
TI  - Criteria for the exponential stability of solutions of equations with bounded aftereffect
JO  - Doklady Akademii Nauk
PY  - 1986
SP  - 11
EP  - 14
VL  - 289
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1986_289_1_a0/
LA  - ru
ID  - DAN_1986_289_1_a0
ER  - 
%0 Journal Article
%A L. M. Berezanskii
%A V. V. Malygina
%A V. A. Sokolov
%T Criteria for the exponential stability of solutions of equations with bounded aftereffect
%J Doklady Akademii Nauk
%D 1986
%P 11-14
%V 289
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1986_289_1_a0/
%G ru
%F DAN_1986_289_1_a0
L. M. Berezanskii; V. V. Malygina; V. A. Sokolov. Criteria for the exponential stability of solutions of equations with bounded aftereffect. Doklady Akademii Nauk, Tome 289 (1986) no. 1, pp. 11-14. http://geodesic.mathdoc.fr/item/DAN_1986_289_1_a0/