Best bilinear approximations of periodic functions of several
Doklady Akademii Nauk, Tome 286 (1986) no. 2, pp. 301-304.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1986_286_2_a10,
     author = {V. N. Temlyakov},
     title = {Best bilinear approximations of periodic functions of several},
     journal = {Doklady Akademii Nauk},
     pages = {301--304},
     publisher = {mathdoc},
     volume = {286},
     number = {2},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1986_286_2_a10/}
}
TY  - JOUR
AU  - V. N. Temlyakov
TI  - Best bilinear approximations of periodic functions of several
JO  - Doklady Akademii Nauk
PY  - 1986
SP  - 301
EP  - 304
VL  - 286
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1986_286_2_a10/
LA  - ru
ID  - DAN_1986_286_2_a10
ER  - 
%0 Journal Article
%A V. N. Temlyakov
%T Best bilinear approximations of periodic functions of several
%J Doklady Akademii Nauk
%D 1986
%P 301-304
%V 286
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1986_286_2_a10/
%G ru
%F DAN_1986_286_2_a10
V. N. Temlyakov. Best bilinear approximations of periodic functions of several. Doklady Akademii Nauk, Tome 286 (1986) no. 2, pp. 301-304. http://geodesic.mathdoc.fr/item/DAN_1986_286_2_a10/