The equation of a two-layer fluid is a completely integrable
Doklady Akademii Nauk, Tome 283 (1985) no. 2, pp. 303-308.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1985_283_2_a10,
     author = {A. O. Radul},
     title = {The equation of a two-layer fluid is a completely integrable},
     journal = {Doklady Akademii Nauk},
     pages = {303--308},
     publisher = {mathdoc},
     volume = {283},
     number = {2},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1985_283_2_a10/}
}
TY  - JOUR
AU  - A. O. Radul
TI  - The equation of a two-layer fluid is a completely integrable
JO  - Doklady Akademii Nauk
PY  - 1985
SP  - 303
EP  - 308
VL  - 283
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1985_283_2_a10/
LA  - ru
ID  - DAN_1985_283_2_a10
ER  - 
%0 Journal Article
%A A. O. Radul
%T The equation of a two-layer fluid is a completely integrable
%J Doklady Akademii Nauk
%D 1985
%P 303-308
%V 283
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1985_283_2_a10/
%G ru
%F DAN_1985_283_2_a10
A. O. Radul. The equation of a two-layer fluid is a completely integrable. Doklady Akademii Nauk, Tome 283 (1985) no. 2, pp. 303-308. http://geodesic.mathdoc.fr/item/DAN_1985_283_2_a10/