The motion of an $n$-dimensional rigid body with symmetry group $\mathrm{SO}(k)\otimes\mathrm{SO}(n-k)$
Doklady Akademii Nauk, Tome 282 (1985) no. 5, pp. 1038-1042.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1985_282_5_a1,
     author = {A. V. Belyaev},
     title = {The motion of an $n$-dimensional rigid body with symmetry group $\mathrm{SO}(k)\otimes\mathrm{SO}(n-k)$},
     journal = {Doklady Akademii Nauk},
     pages = {1038--1042},
     publisher = {mathdoc},
     volume = {282},
     number = {5},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1985_282_5_a1/}
}
TY  - JOUR
AU  - A. V. Belyaev
TI  - The motion of an $n$-dimensional rigid body with symmetry group $\mathrm{SO}(k)\otimes\mathrm{SO}(n-k)$
JO  - Doklady Akademii Nauk
PY  - 1985
SP  - 1038
EP  - 1042
VL  - 282
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1985_282_5_a1/
LA  - ru
ID  - DAN_1985_282_5_a1
ER  - 
%0 Journal Article
%A A. V. Belyaev
%T The motion of an $n$-dimensional rigid body with symmetry group $\mathrm{SO}(k)\otimes\mathrm{SO}(n-k)$
%J Doklady Akademii Nauk
%D 1985
%P 1038-1042
%V 282
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1985_282_5_a1/
%G ru
%F DAN_1985_282_5_a1
A. V. Belyaev. The motion of an $n$-dimensional rigid body with symmetry group $\mathrm{SO}(k)\otimes\mathrm{SO}(n-k)$. Doklady Akademii Nauk, Tome 282 (1985) no. 5, pp. 1038-1042. http://geodesic.mathdoc.fr/item/DAN_1985_282_5_a1/