A linear extension operator for a space of smooth functions defined on a closed subset in $\mathbf{R}^n$
Doklady Akademii Nauk, Tome 280 (1985) no. 2, pp. 268-272
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DAN_1985_280_2_a1,
author = {Yu. A. Brudnyi and P. A. Shvartsman},
title = {A linear extension operator for a space of smooth functions defined on a closed subset in $\mathbf{R}^n$},
journal = {Doklady Akademii Nauk},
pages = {268--272},
publisher = {mathdoc},
volume = {280},
number = {2},
year = {1985},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DAN_1985_280_2_a1/}
}
TY - JOUR
AU - Yu. A. Brudnyi
AU - P. A. Shvartsman
TI - A linear extension operator for a space of smooth functions defined on a closed subset in $\mathbf{R}^n$
JO - Doklady Akademii Nauk
PY - 1985
SP - 268
EP - 272
VL - 280
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/DAN_1985_280_2_a1/
LA - ru
ID - DAN_1985_280_2_a1
ER -
%0 Journal Article
%A Yu. A. Brudnyi
%A P. A. Shvartsman
%T A linear extension operator for a space of smooth functions defined on a closed subset in $\mathbf{R}^n$
%J Doklady Akademii Nauk
%D 1985
%P 268-272
%V 280
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1985_280_2_a1/
%G ru
%F DAN_1985_280_2_a1
Yu. A. Brudnyi; P. A. Shvartsman. A linear extension operator for a space of smooth functions defined on a closed subset in $\mathbf{R}^n$. Doklady Akademii Nauk, Tome 280 (1985) no. 2, pp. 268-272. http://geodesic.mathdoc.fr/item/DAN_1985_280_2_a1/