A linear extension operator for a space of smooth functions defined on a closed subset in $\mathbf{R}^n$
Doklady Akademii Nauk, Tome 280 (1985) no. 2, pp. 268-272.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1985_280_2_a1,
     author = {Yu. A. Brudnyi and P. A. Shvartsman},
     title = {A linear extension operator for a space of smooth functions defined on a closed subset in $\mathbf{R}^n$},
     journal = {Doklady Akademii Nauk},
     pages = {268--272},
     publisher = {mathdoc},
     volume = {280},
     number = {2},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1985_280_2_a1/}
}
TY  - JOUR
AU  - Yu. A. Brudnyi
AU  - P. A. Shvartsman
TI  - A linear extension operator for a space of smooth functions defined on a closed subset in $\mathbf{R}^n$
JO  - Doklady Akademii Nauk
PY  - 1985
SP  - 268
EP  - 272
VL  - 280
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1985_280_2_a1/
LA  - ru
ID  - DAN_1985_280_2_a1
ER  - 
%0 Journal Article
%A Yu. A. Brudnyi
%A P. A. Shvartsman
%T A linear extension operator for a space of smooth functions defined on a closed subset in $\mathbf{R}^n$
%J Doklady Akademii Nauk
%D 1985
%P 268-272
%V 280
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1985_280_2_a1/
%G ru
%F DAN_1985_280_2_a1
Yu. A. Brudnyi; P. A. Shvartsman. A linear extension operator for a space of smooth functions defined on a closed subset in $\mathbf{R}^n$. Doklady Akademii Nauk, Tome 280 (1985) no. 2, pp. 268-272. http://geodesic.mathdoc.fr/item/DAN_1985_280_2_a1/