A completely semiprime maximal right ideal of a ring is two-sided
Doklady Akademii Nauk, Tome 279 (1984) no. 2, pp. 270-273.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1984_279_2_a1,
     author = {V. A. Andrunakievich and A. V. Andrunakievich},
     title = {A completely semiprime maximal right ideal of a ring is two-sided},
     journal = {Doklady Akademii Nauk},
     pages = {270--273},
     publisher = {mathdoc},
     volume = {279},
     number = {2},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1984_279_2_a1/}
}
TY  - JOUR
AU  - V. A. Andrunakievich
AU  - A. V. Andrunakievich
TI  - A completely semiprime maximal right ideal of a ring is two-sided
JO  - Doklady Akademii Nauk
PY  - 1984
SP  - 270
EP  - 273
VL  - 279
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1984_279_2_a1/
LA  - ru
ID  - DAN_1984_279_2_a1
ER  - 
%0 Journal Article
%A V. A. Andrunakievich
%A A. V. Andrunakievich
%T A completely semiprime maximal right ideal of a ring is two-sided
%J Doklady Akademii Nauk
%D 1984
%P 270-273
%V 279
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1984_279_2_a1/
%G ru
%F DAN_1984_279_2_a1
V. A. Andrunakievich; A. V. Andrunakievich. A completely semiprime maximal right ideal of a ring is two-sided. Doklady Akademii Nauk, Tome 279 (1984) no. 2, pp. 270-273. http://geodesic.mathdoc.fr/item/DAN_1984_279_2_a1/