Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DAN_1984_277_1_a5, author = {A. V. Zhiber and A. B. Shabat}, title = {Systems of equations $u_x=p(u,\,v)$, $v_y=q(u,\,v)$ that possess symmetries}, journal = {Doklady Akademii Nauk}, pages = {29--33}, publisher = {mathdoc}, volume = {277}, number = {1}, year = {1984}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DAN_1984_277_1_a5/} }
TY - JOUR AU - A. V. Zhiber AU - A. B. Shabat TI - Systems of equations $u_x=p(u,\,v)$, $v_y=q(u,\,v)$ that possess symmetries JO - Doklady Akademii Nauk PY - 1984 SP - 29 EP - 33 VL - 277 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DAN_1984_277_1_a5/ LA - ru ID - DAN_1984_277_1_a5 ER -
A. V. Zhiber; A. B. Shabat. Systems of equations $u_x=p(u,\,v)$, $v_y=q(u,\,v)$ that possess symmetries. Doklady Akademii Nauk, Tome 277 (1984) no. 1, pp. 29-33. http://geodesic.mathdoc.fr/item/DAN_1984_277_1_a5/