Systems of equations $u_x=p(u,\,v)$, $v_y=q(u,\,v)$ that possess symmetries
Doklady Akademii Nauk, Tome 277 (1984) no. 1, pp. 29-33
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DAN_1984_277_1_a5,
author = {A. V. Zhiber and A. B. Shabat},
title = {Systems of equations $u_x=p(u,\,v)$, $v_y=q(u,\,v)$ that possess symmetries},
journal = {Doklady Akademii Nauk},
pages = {29--33},
publisher = {mathdoc},
volume = {277},
number = {1},
year = {1984},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DAN_1984_277_1_a5/}
}
TY - JOUR AU - A. V. Zhiber AU - A. B. Shabat TI - Systems of equations $u_x=p(u,\,v)$, $v_y=q(u,\,v)$ that possess symmetries JO - Doklady Akademii Nauk PY - 1984 SP - 29 EP - 33 VL - 277 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DAN_1984_277_1_a5/ LA - ru ID - DAN_1984_277_1_a5 ER -
A. V. Zhiber; A. B. Shabat. Systems of equations $u_x=p(u,\,v)$, $v_y=q(u,\,v)$ that possess symmetries. Doklady Akademii Nauk, Tome 277 (1984) no. 1, pp. 29-33. http://geodesic.mathdoc.fr/item/DAN_1984_277_1_a5/