Systems of equations $u_x=p(u,\,v)$, $v_y=q(u,\,v)$ that possess symmetries
Doklady Akademii Nauk, Tome 277 (1984) no. 1, pp. 29-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1984_277_1_a5,
     author = {A. V. Zhiber and A. B. Shabat},
     title = {Systems of equations $u_x=p(u,\,v)$, $v_y=q(u,\,v)$ that possess symmetries},
     journal = {Doklady Akademii Nauk},
     pages = {29--33},
     publisher = {mathdoc},
     volume = {277},
     number = {1},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1984_277_1_a5/}
}
TY  - JOUR
AU  - A. V. Zhiber
AU  - A. B. Shabat
TI  - Systems of equations $u_x=p(u,\,v)$, $v_y=q(u,\,v)$ that possess symmetries
JO  - Doklady Akademii Nauk
PY  - 1984
SP  - 29
EP  - 33
VL  - 277
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1984_277_1_a5/
LA  - ru
ID  - DAN_1984_277_1_a5
ER  - 
%0 Journal Article
%A A. V. Zhiber
%A A. B. Shabat
%T Systems of equations $u_x=p(u,\,v)$, $v_y=q(u,\,v)$ that possess symmetries
%J Doklady Akademii Nauk
%D 1984
%P 29-33
%V 277
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1984_277_1_a5/
%G ru
%F DAN_1984_277_1_a5
A. V. Zhiber; A. B. Shabat. Systems of equations $u_x=p(u,\,v)$, $v_y=q(u,\,v)$ that possess symmetries. Doklady Akademii Nauk, Tome 277 (1984) no. 1, pp. 29-33. http://geodesic.mathdoc.fr/item/DAN_1984_277_1_a5/