Regularity of generalized solutions of the equation $\det(u_{ij})\theta(\nabla u,u,x)=\varphi(x)$
Doklady Akademii Nauk, Tome 275 (1984) no. 1, pp. 26-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1984_275_1_a4,
     author = {A. V. Pogorelov},
     title = {Regularity of generalized solutions of the equation $\det(u_{ij})\theta(\nabla u,u,x)=\varphi(x)$},
     journal = {Doklady Akademii Nauk},
     pages = {26--28},
     publisher = {mathdoc},
     volume = {275},
     number = {1},
     year = {1984},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1984_275_1_a4/}
}
TY  - JOUR
AU  - A. V. Pogorelov
TI  - Regularity of generalized solutions of the equation $\det(u_{ij})\theta(\nabla u,u,x)=\varphi(x)$
JO  - Doklady Akademii Nauk
PY  - 1984
SP  - 26
EP  - 28
VL  - 275
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1984_275_1_a4/
LA  - ru
ID  - DAN_1984_275_1_a4
ER  - 
%0 Journal Article
%A A. V. Pogorelov
%T Regularity of generalized solutions of the equation $\det(u_{ij})\theta(\nabla u,u,x)=\varphi(x)$
%J Doklady Akademii Nauk
%D 1984
%P 26-28
%V 275
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1984_275_1_a4/
%G ru
%F DAN_1984_275_1_a4
A. V. Pogorelov. Regularity of generalized solutions of the equation $\det(u_{ij})\theta(\nabla u,u,x)=\varphi(x)$. Doklady Akademii Nauk, Tome 275 (1984) no. 1, pp. 26-28. http://geodesic.mathdoc.fr/item/DAN_1984_275_1_a4/