Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DAN_1983_272_4_a4, author = {A. V. Pogorelov}, title = {A priori estimates for solutions of the equation $\det(z_{ij})=\varphi(z_1,z_2,\dots,z_n,z,x_1,x_2,\dots,x_n)$}, journal = {Doklady Akademii Nauk}, pages = {792--794}, publisher = {mathdoc}, volume = {272}, number = {4}, year = {1983}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DAN_1983_272_4_a4/} }
TY - JOUR AU - A. V. Pogorelov TI - A priori estimates for solutions of the equation $\det(z_{ij})=\varphi(z_1,z_2,\dots,z_n,z,x_1,x_2,\dots,x_n)$ JO - Doklady Akademii Nauk PY - 1983 SP - 792 EP - 794 VL - 272 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DAN_1983_272_4_a4/ LA - ru ID - DAN_1983_272_4_a4 ER -
A. V. Pogorelov. A priori estimates for solutions of the equation $\det(z_{ij})=\varphi(z_1,z_2,\dots,z_n,z,x_1,x_2,\dots,x_n)$. Doklady Akademii Nauk, Tome 272 (1983) no. 4, pp. 792-794. http://geodesic.mathdoc.fr/item/DAN_1983_272_4_a4/