A priori estimates for solutions of the equation $\det(z_{ij})=\varphi(z_1,z_2,\dots,z_n,z,x_1,x_2,\dots,x_n)$
Doklady Akademii Nauk, Tome 272 (1983) no. 4, pp. 792-794
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DAN_1983_272_4_a4,
author = {A. V. Pogorelov},
title = {A priori estimates for solutions of the equation $\det(z_{ij})=\varphi(z_1,z_2,\dots,z_n,z,x_1,x_2,\dots,x_n)$},
journal = {Doklady Akademii Nauk},
pages = {792--794},
year = {1983},
volume = {272},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DAN_1983_272_4_a4/}
}
TY - JOUR
AU - A. V. Pogorelov
TI - A priori estimates for solutions of the equation $\det(z_{ij})=\varphi(z_1,z_2,\dots,z_n,z,x_1,x_2,\dots,x_n)$
JO - Doklady Akademii Nauk
PY - 1983
SP - 792
EP - 794
VL - 272
IS - 4
UR - http://geodesic.mathdoc.fr/item/DAN_1983_272_4_a4/
LA - ru
ID - DAN_1983_272_4_a4
ER -
A. V. Pogorelov. A priori estimates for solutions of the equation $\det(z_{ij})=\varphi(z_1,z_2,\dots,z_n,z,x_1,x_2,\dots,x_n)$. Doklady Akademii Nauk, Tome 272 (1983) no. 4, pp. 792-794. http://geodesic.mathdoc.fr/item/DAN_1983_272_4_a4/