A priori estimates for solutions of the equation $\det(z_{ij})=\varphi(z_1,z_2,\dots,z_n,z,x_1,x_2,\dots,x_n)$
Doklady Akademii Nauk, Tome 272 (1983) no. 4, pp. 792-794.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1983_272_4_a4,
     author = {A. V. Pogorelov},
     title = {A priori estimates for solutions of the equation $\det(z_{ij})=\varphi(z_1,z_2,\dots,z_n,z,x_1,x_2,\dots,x_n)$},
     journal = {Doklady Akademii Nauk},
     pages = {792--794},
     publisher = {mathdoc},
     volume = {272},
     number = {4},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1983_272_4_a4/}
}
TY  - JOUR
AU  - A. V. Pogorelov
TI  - A priori estimates for solutions of the equation $\det(z_{ij})=\varphi(z_1,z_2,\dots,z_n,z,x_1,x_2,\dots,x_n)$
JO  - Doklady Akademii Nauk
PY  - 1983
SP  - 792
EP  - 794
VL  - 272
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1983_272_4_a4/
LA  - ru
ID  - DAN_1983_272_4_a4
ER  - 
%0 Journal Article
%A A. V. Pogorelov
%T A priori estimates for solutions of the equation $\det(z_{ij})=\varphi(z_1,z_2,\dots,z_n,z,x_1,x_2,\dots,x_n)$
%J Doklady Akademii Nauk
%D 1983
%P 792-794
%V 272
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1983_272_4_a4/
%G ru
%F DAN_1983_272_4_a4
A. V. Pogorelov. A priori estimates for solutions of the equation $\det(z_{ij})=\varphi(z_1,z_2,\dots,z_n,z,x_1,x_2,\dots,x_n)$. Doklady Akademii Nauk, Tome 272 (1983) no. 4, pp. 792-794. http://geodesic.mathdoc.fr/item/DAN_1983_272_4_a4/