The maximum principle for generalized solutions of the equation $\theta(\nabla z,\,z,\,x)\det(z_{ij})=\varphi (x)$
Doklady Akademii Nauk, Tome 271 (1983) no. 5, pp. 1064-1066.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1983_271_5_a8,
     author = {A. V. Pogorelov},
     title = {The maximum principle for generalized solutions of the equation $\theta(\nabla z,\,z,\,x)\det(z_{ij})=\varphi (x)$},
     journal = {Doklady Akademii Nauk},
     pages = {1064--1066},
     publisher = {mathdoc},
     volume = {271},
     number = {5},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1983_271_5_a8/}
}
TY  - JOUR
AU  - A. V. Pogorelov
TI  - The maximum principle for generalized solutions of the equation $\theta(\nabla z,\,z,\,x)\det(z_{ij})=\varphi (x)$
JO  - Doklady Akademii Nauk
PY  - 1983
SP  - 1064
EP  - 1066
VL  - 271
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1983_271_5_a8/
LA  - ru
ID  - DAN_1983_271_5_a8
ER  - 
%0 Journal Article
%A A. V. Pogorelov
%T The maximum principle for generalized solutions of the equation $\theta(\nabla z,\,z,\,x)\det(z_{ij})=\varphi (x)$
%J Doklady Akademii Nauk
%D 1983
%P 1064-1066
%V 271
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1983_271_5_a8/
%G ru
%F DAN_1983_271_5_a8
A. V. Pogorelov. The maximum principle for generalized solutions of the equation $\theta(\nabla z,\,z,\,x)\det(z_{ij})=\varphi (x)$. Doklady Akademii Nauk, Tome 271 (1983) no. 5, pp. 1064-1066. http://geodesic.mathdoc.fr/item/DAN_1983_271_5_a8/