Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DAN_1983_271_5_a8, author = {A. V. Pogorelov}, title = {The maximum principle for generalized solutions of the equation $\theta(\nabla z,\,z,\,x)\det(z_{ij})=\varphi (x)$}, journal = {Doklady Akademii Nauk}, pages = {1064--1066}, publisher = {mathdoc}, volume = {271}, number = {5}, year = {1983}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DAN_1983_271_5_a8/} }
TY - JOUR AU - A. V. Pogorelov TI - The maximum principle for generalized solutions of the equation $\theta(\nabla z,\,z,\,x)\det(z_{ij})=\varphi (x)$ JO - Doklady Akademii Nauk PY - 1983 SP - 1064 EP - 1066 VL - 271 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DAN_1983_271_5_a8/ LA - ru ID - DAN_1983_271_5_a8 ER -
%0 Journal Article %A A. V. Pogorelov %T The maximum principle for generalized solutions of the equation $\theta(\nabla z,\,z,\,x)\det(z_{ij})=\varphi (x)$ %J Doklady Akademii Nauk %D 1983 %P 1064-1066 %V 271 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/DAN_1983_271_5_a8/ %G ru %F DAN_1983_271_5_a8
A. V. Pogorelov. The maximum principle for generalized solutions of the equation $\theta(\nabla z,\,z,\,x)\det(z_{ij})=\varphi (x)$. Doklady Akademii Nauk, Tome 271 (1983) no. 5, pp. 1064-1066. http://geodesic.mathdoc.fr/item/DAN_1983_271_5_a8/