The maximum principle for generalized solutions of the equation $\theta(\nabla z,\,z,\,x)\det(z_{ij})=\varphi (x)$
Doklady Akademii Nauk, Tome 271 (1983) no. 5, pp. 1064-1066
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DAN_1983_271_5_a8,
author = {A. V. Pogorelov},
title = {The maximum principle for generalized solutions of the equation $\theta(\nabla z,\,z,\,x)\det(z_{ij})=\varphi (x)$},
journal = {Doklady Akademii Nauk},
pages = {1064--1066},
year = {1983},
volume = {271},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DAN_1983_271_5_a8/}
}
TY - JOUR
AU - A. V. Pogorelov
TI - The maximum principle for generalized solutions of the equation $\theta(\nabla z,\,z,\,x)\det(z_{ij})=\varphi (x)$
JO - Doklady Akademii Nauk
PY - 1983
SP - 1064
EP - 1066
VL - 271
IS - 5
UR - http://geodesic.mathdoc.fr/item/DAN_1983_271_5_a8/
LA - ru
ID - DAN_1983_271_5_a8
ER -
A. V. Pogorelov. The maximum principle for generalized solutions of the equation $\theta(\nabla z,\,z,\,x)\det(z_{ij})=\varphi (x)$. Doklady Akademii Nauk, Tome 271 (1983) no. 5, pp. 1064-1066. http://geodesic.mathdoc.fr/item/DAN_1983_271_5_a8/