An irreducible simply connected algebraic curve in $\mathbf{C}^2$ is equivalent to a quasihomogeneous curve
Doklady Akademii Nauk, Tome 271 (1983) no. 5, pp. 1048-1052.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1983_271_5_a4,
     author = {M. G. Zaidenberg and V. Ya. Lin},
     title = {An irreducible simply connected algebraic curve in $\mathbf{C}^2$ is equivalent to a quasihomogeneous curve},
     journal = {Doklady Akademii Nauk},
     pages = {1048--1052},
     publisher = {mathdoc},
     volume = {271},
     number = {5},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1983_271_5_a4/}
}
TY  - JOUR
AU  - M. G. Zaidenberg
AU  - V. Ya. Lin
TI  - An irreducible simply connected algebraic curve in $\mathbf{C}^2$ is equivalent to a quasihomogeneous curve
JO  - Doklady Akademii Nauk
PY  - 1983
SP  - 1048
EP  - 1052
VL  - 271
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1983_271_5_a4/
LA  - ru
ID  - DAN_1983_271_5_a4
ER  - 
%0 Journal Article
%A M. G. Zaidenberg
%A V. Ya. Lin
%T An irreducible simply connected algebraic curve in $\mathbf{C}^2$ is equivalent to a quasihomogeneous curve
%J Doklady Akademii Nauk
%D 1983
%P 1048-1052
%V 271
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1983_271_5_a4/
%G ru
%F DAN_1983_271_5_a4
M. G. Zaidenberg; V. Ya. Lin. An irreducible simply connected algebraic curve in $\mathbf{C}^2$ is equivalent to a quasihomogeneous curve. Doklady Akademii Nauk, Tome 271 (1983) no. 5, pp. 1048-1052. http://geodesic.mathdoc.fr/item/DAN_1983_271_5_a4/