The rate of convergence in $W^1_{2,h}$ of the variational-difference method for elliptic equations
Doklady Akademii Nauk, Tome 271 (1983) no. 4, pp. 784-788.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DAN_1983_271_4_a2,
     author = {A. A. Zlotnik},
     title = {The rate of convergence in $W^1_{2,h}$ of the variational-difference method for elliptic equations},
     journal = {Doklady Akademii Nauk},
     pages = {784--788},
     publisher = {mathdoc},
     volume = {271},
     number = {4},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DAN_1983_271_4_a2/}
}
TY  - JOUR
AU  - A. A. Zlotnik
TI  - The rate of convergence in $W^1_{2,h}$ of the variational-difference method for elliptic equations
JO  - Doklady Akademii Nauk
PY  - 1983
SP  - 784
EP  - 788
VL  - 271
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DAN_1983_271_4_a2/
LA  - ru
ID  - DAN_1983_271_4_a2
ER  - 
%0 Journal Article
%A A. A. Zlotnik
%T The rate of convergence in $W^1_{2,h}$ of the variational-difference method for elliptic equations
%J Doklady Akademii Nauk
%D 1983
%P 784-788
%V 271
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DAN_1983_271_4_a2/
%G ru
%F DAN_1983_271_4_a2
A. A. Zlotnik. The rate of convergence in $W^1_{2,h}$ of the variational-difference method for elliptic equations. Doklady Akademii Nauk, Tome 271 (1983) no. 4, pp. 784-788. http://geodesic.mathdoc.fr/item/DAN_1983_271_4_a2/