Completely integrable geodesic flows of left-invariant metrics on Lie groups which are connected with commutative graded algebras with Poincaré duality
Doklady Akademii Nauk, Tome 263 (1982) no. 4, pp. 812-816
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DAN_1982_263_4_a10,
author = {V. V. Trofimov},
title = {Completely integrable geodesic flows of left-invariant metrics on {Lie} groups which are connected with commutative graded algebras with {Poincar\'e} duality},
journal = {Doklady Akademii Nauk},
pages = {812--816},
year = {1982},
volume = {263},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DAN_1982_263_4_a10/}
}
TY - JOUR AU - V. V. Trofimov TI - Completely integrable geodesic flows of left-invariant metrics on Lie groups which are connected with commutative graded algebras with Poincaré duality JO - Doklady Akademii Nauk PY - 1982 SP - 812 EP - 816 VL - 263 IS - 4 UR - http://geodesic.mathdoc.fr/item/DAN_1982_263_4_a10/ LA - ru ID - DAN_1982_263_4_a10 ER -
%0 Journal Article %A V. V. Trofimov %T Completely integrable geodesic flows of left-invariant metrics on Lie groups which are connected with commutative graded algebras with Poincaré duality %J Doklady Akademii Nauk %D 1982 %P 812-816 %V 263 %N 4 %U http://geodesic.mathdoc.fr/item/DAN_1982_263_4_a10/ %G ru %F DAN_1982_263_4_a10
V. V. Trofimov. Completely integrable geodesic flows of left-invariant metrics on Lie groups which are connected with commutative graded algebras with Poincaré duality. Doklady Akademii Nauk, Tome 263 (1982) no. 4, pp. 812-816. http://geodesic.mathdoc.fr/item/DAN_1982_263_4_a10/